
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Comment on Slip Velocity at a Fluid-Solid Boundary
B. V. Paranjapeab; R. E. Robsona

a Physics Dept., James Cook University, Townsville, Australia b Physics Dept., University of Alberta,
Edmonton, Canada

To cite this Article Paranjape, B. V. and Robson, R. E.(1990) 'Comment on Slip Velocity at a Fluid-Solid Boundary', Physics
and Chemistry of Liquids, 21: 3, 147 — 156
To link to this Article: DOI: 10.1080/00319109008028477
URL: http://dx.doi.org/10.1080/00319109008028477

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319109008028477
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Phys. Chem. Liq., 1990, Vol. 21, pp. 147-156 
Reprints available directly from the publisher 
Photocopying permitted by licence only 

1990 Gordon and Breach Science Publishers, Inc. 
Printed in Great Britain 

COMMENT ON SLIP VELOCITY AT A 
FLUID-SOLID BOUNDARY 

B. V. PARANJAPE? and R. E. ROBSON, 

Physics Depr., James Cook University, Townsville, Australia. 

(Received 20 Seplernber, 1989) 

The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip 
assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute 
gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic 
theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the 
gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. 
Qualitative arguments are used for liquids and similar conclusions are reached. 

A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of 
nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force 
proportional to the slip velocity and viscosity is assumed to  have the same constant value everywhere. 

KEY WORDS: Kinetic theory, shear stress 

1 INTRODUCTION 

It has long been known, since the time of Maxwell and Helmholtz, that a fluid in 
contact with a solid may slip past with nonzero velocity at the surface. However, the 
absence of supporting experimental evidence has led scientists to the conclusion that a 
slip velocity does not generally exist.'S2 Go ld~ te in ,~  in his classic treatise on hydrodyn- 
amics, has surveyed various propositions on the matter and concluded that slip, if it 
takes place, is too small or, a quasi-solid layer of fluid, if there is one, is too thin to 
either be observed or to make an observable difference in the results of theoretical 
calculations. There exists, however, no compelling theoretical argument supporting 
the non-slip assumption, despite its wide application in many areas of fluid science 
and engineering. In fact, we contend that the reverse is true: Physical reasoning points 
to nonzero slip as a necessary condition for a fluid to exert a shear stress on a solid.3 In 
the context of the kinetic theory of gases, at least, the necessity of slip seems to have 
been established, eg., by Kramers and Ki~temaker ,~  although such acknowledgement 
is by no means universal. For liquids, it is almost considered an article of faith that slip 
does not occur. We hope that the present article, like the preceding note3 on the same 
topic, will serve to dispel this misunderstanding. 

Schnell' reported some earlier experiments supporting the existence of slip at a 
fluid-solid boundary, in which water flowing over glass, made water-repellent through 

t Permanent address: Physics Dept., University of Alberta, Edmonton, Canada. 
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treatment with the vapour dimethyldichlorosilane silicone, is found to exhibit a small 
but nevertheless measurable slip velocity. Experiments6 on the spreading of liquid 
films on rotating discs have been satisfactorily interpreted in terms of nonzero slip 
velocity. Koplik et have carried out numerical simulations of fluid flow through a 
channel and have found that, for a two-fluid system, the no-slip condition appears to 
break down at the line of contact. 

We believe that any macroscopic theory based upon the assumption of zero 
velocity at the boundary is inconsistent with the above experimental evidence and is in 
any case conceptually at fault.3 A liquid in contact with a solid surface cannot 
experience a retarding, tangential force from the solid if there is no relative motion. 
Unlike the solid-solid case, stationary liquid in contact with a solid surface cannot 
sustain shear. In making these observations, it is assumed that intermolecular forces 
are of short range, so that solid molecules therefore effectively interact only with those 
fluid molecules in the immediate vicinity. 

Shear stress in a fluid is a result of a momentum flux, as represented by the tensor 
2t. For a fluid of N particles, each of mass rn, located in volume V, the flux of the x- 
component of momentum in the z-direction is given by's9 

nN- - 
t,, = nm u,u, + ~ zF,, 2 

where n = N / V  is the number density of molecules, v is the velocity of a fluid particle 
and 

F =  -V$ ( 2 )  

is the intermolecular force, where t+b is the potential energy of a given pair of molecules. 
The overhead bar denotes an appropriate average. We have in mind a system of 
coordinates in which the z-axis is defined by the normal to the boundary and x-axis by 
the direction of the average fluid flow velocity, V = ( f i x ,  0,O). The rhs of (1)  vanishes for 
equilibrium distribution functions. Non-vanishing contributions arise from spatial 
inhomogeneities, for example, a shear dfi,/dz in fluid velocity, and then appropriate 
non-equilibrium distribution functions" must be employed. The viscosity coefficient, 
q, of a fluid, defined by 

ao, 
aZ t,, = -'I-, (3) 

can be found in this way, at least in the bulk of the fluid. However, near the boundary, 
modifications to the above expression for t,, will arise and the effective viscosity 
coefficient, q', will be a property of the boundary as well as of the fluid. 
For a rarefied gas, a typical molecule spends most of its time as a free particle between 
occasional, abrupt collisions. Transport of momentum is therefore accomplished 
chiefly by each molecule carrying its own momentum. This is represented by the first 
term on the rhs of (1). The second term makes negligible contributions, because t+b is 
vanishingly small for interparticle spacing characteristic of gases. Green' and Mori'' 
have shown by means of a collision approximation that the above averaging is 
consistent with Chapman-Enskog theory.13 
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SLIP VELOCITY AT FLUID-SOLID BOUNDARY 149 

In marked contrast, the second term on the rhs of (1) is dominant for liquids. There, 
each molecule is effectively enclosed in a cell formed by its nearest neighbours and 
only occasionally migrates to a neighbouring cell. A molecule is therefore predomin- 
antly under the influence of its nearest neighbours and momentum is transferred 
through space via forces exerted between neighbouring molecules. In the next two 
sections we consider both cases using straightforward calculations and arguments. 

So long as one is far from the boundary, the first term on the rhs of (1 )  is relatively 
straightforward to calculate, eg., by using Chapman-Enskog theory to solve Boltz- 
mann’s e q ~ a t i 0 n . l ~  Boundary effects, however, lead to very difficult problems in 
kinetic theoryI4*l5 and for this reason, we have in Section I1 adopted an approach 
consistent with the semi-quantitative scope of our work, namely, the elementary 
method of mean free paths. Although crude in some respects, the method does bring 
out quite clearly the essential features of our argument concerning slip at the 
boundary. The approach is similar to that found in well known texts by Huang16 and 
McDaniel. l 7  

Liquid properties, on the other hand, are not so easy to model. In Section 111 we 
give as formal derivation of the stress in a fluid, starting from (l), devoting particular 
attention to the boundary region but otherwise following Ref. 18. Results analogous 
to the case of a rarefied gas are obtained. We discuss the results and further 
implications in Section IV. 

I1 GASES 

a) Mean free path analysis near boundaries 

For simplicity, we take a plane boundary surface, the normal to which defines the z- 
axis of a system of coordinates (Fig. 1). All properties are assumed uniform in the x-y  
plane. 

Z 

Figure 1 2. 
cos 0, where 1 is the mean free path between collisions, depending upon whether they are moving in the k z  
direction. Close to the boundary ( z o  < i), the upward flux will contain a contribution from the boundary 
for angles 0 < no, = z 0 / L  

Molecules passing through the plane z = zo  have on the average made a collision at z = zo 
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150 B. V. PARANJAPE AND R. E. ROBSON 

We calculate the transport of an arbitrary property u(z) of the gas through the plane 
z = zo, using arguments similar to those found in elementary discussions on gas 
kinetic theory16.”, but allowing for the influence of the boundary surface at z = 0. 
The crux of the argument is that molecules of mean free path A crossing the plane 
z = zo at angle 8 to the normal carry with them properties of the gas at z = 
zo - 2 cos 8 if moving in the positive z-direction and properties appropriate to 
z = zo + A cos 8 if moving in the negative z-direction. Without going into the 
algebraic details we have then that the flux of property u (per particle of fluid) in the 
positive z-direction is 

nij x i 2  

Jic)(z0) = joo cos 8 sin 0 u(z0 - A cos 8) d8 + JIB), (4) 

where n the number density of molecules, U their average speed and 8, is an angle 
defined by 

cos - l(zo/A), 0 5 zo < A 
Q o = (  0 , A < z o < c o  

The last term JL’) on the rhs of (4) accounts for the flux of u due to particles coming 
directly from the boundary and requires a knowledge of boundary properties for its 
complete specification. For the present, all we need to know is that 

( 6 )  
The next step in the traditional analysis is to approximate u(zo - 2 cos 8) by the 

(7) 

JL”’ = 0, zo > A. 

first two terms in a Taylor series expansion, and hence (4) becomes approximately 

J:+)(~,) = t n v  cos2eo[u(zo) - :A cos eoUyzo)l + J I B ) .  

Jif’(z, > A) = anU[u(z,) - +AU’(Z,)]. 

which beyond the “boundary layer” becomes, by virtue of ( 5 )  and (6) ,  

(8) 

The flux in the negative z-direction can be found similarly and is approximately 

JL-)(Zo) = anv [u(zo) + $Au’(z,)] (9) 

for all values of zo, independently of boundary effects. 
The ner flux of u in the z-direction is thus 

J,(zo) = Ji+’(Z,) - JL-)(Zo) 

zo > A 
-,un(i - cos2eo)u(zo) - Q ~ A U ( I  + cos3eo)u’(zo) + J I B ) ,  o I zo < A Y O a )  (lob) 
- f nAUu’(z,), = {  1 -  

Equation (10a) is the familiar elementary flux-gradient relationship, applicable in 
the bulk of the fluid. Equation (lob) also furnishes a flux-gradient relationship, if u 
can be expressed in terms of u’, formally, 

u = pu’ (1 1) 
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SLIP VELOCITY AT FLUID-SOLID BOUNDARY 151 

in the boundary layer, where p is some property of the gas plus boundary. 

b) Viscousjow 

The flux of x-momentum in the z direction may be found by setting 

u = mts,, J ,  = T,, (12) 

in (lOa,b), where m is molecular mass and I?, is the x-component of average fluid 
velocity. Thus, using (5) and (lo), we have 

where we have assumed that the boundary is a perfect absorber of momentum and 
have taken the last term on the rhs of (lob) as zero (see discussion under (iii) below), 
and 

r]  = fnm& (14) 

is the shear viscosity coefficient of the gas. Equation (13a) applies to the bulk of the gas 
only. Further assumptions are required to make further progress. 

(i) No slip assumption 

If it is assumed that 6, = 0 (formally equivalent to setting p = 0 in ( 1  1) )  in the 
boundary layer, then (1 3b) yields 

where 

r]' = $ r ] (  1 + 2323) ( 16a) 

is an effective viscosity coefficient. Clearly, the no-slip condition is inconsistent 
with the assumption of constant viscosity coefficient throughout the fluid. 
Moreover, the no-slip assumption appears very much ad hoc, even in the context 
of the present, very elementary theory. 

(ii) General houndmy condition (1  1 )  

I f  (1 1 )  is assumed with u = mv,, then we once again obtain an equation of the 
form (1 5) with 

r]' = i0( 1 + ;{) 
at the boundary. 
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152 B. V. PARANJAPE A N D  R. E. ROBSON 

(iii) Perfect absorber assumption 

Let us momentarily return to the general discussion in terms of an arbitrary 
property u, later to be identified with mv,, the mean momentum of a fluid particle. 
Let us also assume that the boundary is perfect absorber of u, so that in (lob) 

51”’ = 0. (17) 

This is the “boundary condition” to be imposed upon the fluid flow and is the only 
extra information which may be used to furnish the required expression (1 1). 
Consider, as McDaniel” has done (without saying so explicitly), that the actual 
boundary surface z = 0 is replaced by a “filter” which transmits the property u in one 
direction (downwards) only and that the gas now occupies all of space - 00 < z < 00. 
In that case, the flux from the boundary JIB) is the gas flux for 0 I 6 < B0 and 
corresponds to the “missing part” of the integral in (4), ie., 

JL”) = fn6 1; cos 6 sin 0 u(zo - A cos 6) d6 (18) 

and this must be equal to zero by virtue of (1 7). Proceeding through the usual Taylor 
expansion we find then, for zo = 0 (6, = n/2), 

JIB’ = fnG(u - 32.’) 

= o  
from which we find 

ie., in terms of equation ( 1  l), = 32.  Thus, the flux of u to the boundary is 

at zo = 0. 
This result can be shown to be true throughout the boundary layer. Thus, with the 

condition (19) relating the property with its gradient, the flux-gradient relationship is 
the same (compare (10a) and (20)) throughout the fluid, ie., the same (constant) 
transport coefficient can be applied everywhere. 
If we now specify the property as 

u = m6, 

then we arrive at the flux-gradient relationship 
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SLIP VELOCITY AT FLUID-SOLID BOUNDARY 153 

where q is given by (14), which now applies throughout the gas, with the boundary 
condition 

relating the (non-zero) slip velocity with the velocity shear. 
We would expect similar results to follow from more rigorous kinetic theoretical 

analysis, although numerical constants would, of course, differ, eg., the coefficient in 
(21) would be of order A, although the numerical factor would differ from 2/3. 

Note that McDaniel’s analysis’ is for gaseous charged particles near electrodes 
and that the property u corresponding to his work is the number density n of these 
particles. He obtains an expression similar to (21) linking the value of n at the 
boundary with the density gradient and discusses the result in terms of “extrapolation 
length”, the distance into the boundary to which the density profile extrapolates to 
zero. A similar concept could have been introduced in connection with fluid flow. We 
wish at this stage merely to point out that there is a one-to-one correspondence 
between the existence of a nonzero slip velocity at the boundary of a fluid flow and the 
nonvanishing of the charged particle density at the surface of an electrode. 

There has been some discussion in the literature’’ concerning the “bounce back” 
boundary condition, in which a molecule reverses its velocity upon impact with the 
boundary. I t  has, it seems, been proposed, not because it reflects the reality 
of boundary collisions in any way (far from it!) but chiefly because it leads to a zero 
slip velocity. As the no-slip condition itself is of dubious pedigree since it must be 
imposed ad hoc, rather than on physical grounds, there seems little justification for 
considering this boundary condition further. Likewise, specular (perfectly elastic) 
reflection at a boundary may well lead to zero slip,’’ but then it obviously also leads 
to zero tangential momentum-transfer (and hence zero stress) to the boundary! 
Steady state can never be reached under these circumstances. 

111 LIQUIDS 

In a liquid, the first term on the rhs of (1) can be neglected in comparison with the 
second, which contains in effect a summation over all pairs of molecules. The actual 
force experienced by a given molecule is the resultant of forces exerted by all other 
molecules. Under equilibrium conditions this summation vanishes. 

Following well known methods,” the average in (1) is calculated by integrating z F ,  
over a density function p(r) = p(r ,  0, $), where r = (x, y ,  z )  is the vector describing the 
separation of two molecules. We assume that for laminar flow with sufficiently small 
velocity gradient dI?,/c?z, the density distribution is given by 

U ( r )  sin 0 cos 0 cos 4 , 1 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1
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where p ( r )  is the equilibrium density and U ( r )  is a radial function determined by a 
second-order differential equationZ0gz1 involving the intermolecular potential $(r) .  In 
this case, the second term in equations (1) and (22) yield for the bulk of the liquid 

ie., equation (3)  once more with q given by the expression in curly brackets. 
Applying similar arguments on the boundary, however, we find that the range of 

integration of 6 extends only to 4 2 ,  since there is fluid only in the upper hemisphere. 
The potential energy $, as predominantly given by nearest neighbour interactions, 
will now include terms involving liquid-solid molecule interactions. Likewise, U ( r ) ,  
which depends upon $, is now influenced by solid as well as fluid molecules. Formally, 
then, we expect the momentum flux at the boundary to be 

where q‘ depends now upon both fluid and boundary properties and is given by 

where primes denote properties pertaining to the fluid boundary layer. The calcula- 
tion of these quantities is beyond the scope of this paper and is in any case not 
necessary for the qualitative conclusions which we wish to draw. We futhermore 
expect an equation similar to (24) to apply away from the boundary with q’ being a 
function of z (cf. the discussion for gases in Section 11). 

IV CONCLUDING REMARKS 

In sheared fluid flow the fluid exerts a force on the boundary, through a momentum 
flux, and vice versa. This force F ,  has been calculated in Sections I1 and 111, for gases 
and liquids respectively, and depends on properties of both fluid and solid boundary. 
It can generally be written as 

F ,  = - t,, = qe]O 
at the boundary where viscosity coefficient q differs from the usual bulk viscosity 
coefficient q.  The calculation of q’, as distinct from q, is generally quite difficult and 
therefore we propose a simple, physical macroscopic model: 
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SLIP VELOCITY AT FLUID-SOLID BOUNDARY 155 

(i) Viscosity coefficient is taken as the same constant value, q, throughout the fluid, 

(ii) At  the boundary, the fluid has small slip velocity us = V,(O), related to the 
both in the bulk and in the boundary layer; 

velocity gradient by (cf. (1 1 ) )  

where f i  is a parameter with dimensions of length. Combining (26) and (27) 
gives 

F ,  = PUB,  (28) 

where 

is a friction coefficient3, dependent upon properties of the fluid, solid and the 
nature of the surface. 

For gases, the friction coefficient is relatively straightforward to calculate, eg., in 
equation (21) of Section 11 we found f i  = 2 for a boundary acting as a perfect 
absorber of momentum and then 

p = tnmv (30) 

Although the theory leading to this result is rather elementary, we nevertheless expect 
that more rigorous theories will furnish f i  - 1 and that (30) will provide at least the 
right order of magnitude estimate for p. 

For liquids, equation (27) is yet to be established. We might expect that fl  - a, the 
average interparticle spacing and that therefore 

P - via. 
At this stage, however, we feel i t  best to regard p as a empirical parameter. 

must be done at the boundary at a rate 
We also observe that, if the boundary exerts a force opposing fluid flow, then work 

per unit area. This is converted to heat. An alternative view of this heat generation 
could be gained from application of the ideas of Section I1 to calculate energy transfer 
from the gas to the boundary. Even if the temperatures of the gas and solid are the 
same, there is a net energy flux (associated with the nonzero average velocity of the 
gas) to the boundary which is equal to (31). N o  such energy dissipation is admitted if 
slip velocity us is arbitrarily chosen to be zero. 

We hope that this article, though essentially qualitative in scope, will prompt fluid 
dynamicists and others to reconsider their views on slip at a fluid-solid interface. 
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